Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery
نویسندگان
چکیده
The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change.
منابع مشابه
Geographic object-based delineation of neighborhoods of Accra, Ghana using QuickBird satellite imagery.
The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two approaches to aggregating census enumeration areas (EAs) based on image-derived measures of vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2) image segmentation. Both approach...
متن کاملObject-based classification of residential land use within Accra, Ghana based on QuickBird satellite data.
A segmentation and hierarchical classification approach applied to QuickBird multispectral satellite data was implemented, with the goal of delineating residential land use polygons and identifying low and high socio-economic status of neighbourhoods within Accra, Ghana. Two types of object-based classification strategies were tested, one based on spatial frequency characteristics of multispect...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملComparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama
Mangrove stands of differing species composition are hard to distinguish in conventional, coarse resolution satellite images. The new generation of meter-level satellite imagery provides a unique opportunity to achieve this goal. In this study, an IKONOS Geo bundle image and a QuickBird Standard bundle image were acquired for a study area located at Punta Galeta on the Caribbean coast of Panama...
متن کامل